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1. Introduction to Autonomous Driving 

Autonomous driving is a collection of technologies that allow a vehicle to sense and perceive 

the physical and social environment, model and plan its driving behavior, and then make 

decisions based on a cost versus benefit analysis. The promise of autonomous driving is to 

create a safer system, with less congestion and a better user experience, that can operate at 

scale without significant manual intervention. 

The definition of five levels of vehicle autonomy ranges from 0 to 5. Vehicles with level 0 

autonomy have no automation and drivers execute all vehicle control tasks. With increased 

system capability, level 1 vehicles have some driver assist features while level 2 vehicles can 

autonomously control speed and steering but require driver attention. At levels 3, 4, and 5, 

vehicles operate with increasing autonomy and decreasing reliance on driver attention and 

intervention. Machine learning has been a part of the intelligent systems used in autonomous 

driving for decades. The rise in the use of machine learning is directly associated with the 

ability to capture, store, and process the vast amount of data generated by these highly 

automated vehicles. 

The interest in and potential market for autonomous vehicles is significant. Worldwide, it is 

estimated that over 1.3 million people die annually due to road traffic crashes. Although those 

numbers have dropped in recent years in many places, new safety technologies are anticipated 

to provide greater reductions. In the United States, it is estimated that in 2016 traffic crashes 

cost over 90 billion dollars in lost productivity and over 160 billion dollars in lost wages. 

Injuries cost an estimated 79 billion dollars. The manufacturing sector continues to hold that 

as their largest worker-related compensation issue. Decades from now, those costs could 

approach zero with the adoption of safer vehicles and autonomous interventions. These are 

some of the reasons that manufacturers, federal and state governments, and the research and 

academic communities continue to work together to make the potential of autonomous 

vehicle operation a reality. 
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2. Fundamentals of Machine Learning in Autonomous Systems 

This section delves into the principles of machine learning as they pertain to autonomous 

systems. It discusses various approaches and techniques used to enable vehicles to learn from 

data. The differences between supervised, unsupervised, and reinforcement learning are 

clarified. Important concepts such as neural networks and deep learning are introduced, 

presenting their roles in processing complex data. The relationship between sensor data and 

machine learning algorithms is emphasized. Real-world applications of machine learning in 

various aspects of autonomous driving are explored. This background prepares the reader for 

a deeper understanding of how these fundamentals impact decision-making in driving. 

There are several approaches where data is used to enable the learning of a vehicle: supervised 

learning, unsupervised learning, and reinforcement learning. With supervised learning, there 

are input-output pairs of data for which the output is already known. Autonomous systems 

require vehicles to learn from sensor measurements, but it is not possible to measure what 

correct action the vehicle should have executed while learning. Consequently, unsupervised 

learning is not applicable in autonomous systems. In addition, reinforcement learning is not 

practically appealing for many reasons, such as the policy learned may not converge, may not 

exist, or may be difficult to compute. 

Instead, one of the most popular and practical machine learning approaches used to enable 

vehicles to learn from data is supervised learning. Machine intelligence makes use of many 

learning concepts. For instance, deep learning is used to train very large neural networks and 

is applicable whenever an important part of the problem is to find patterns in data, if the 

system can learn from a large amount of data, and regarding both consequences and 

predictions when all the relevant information cannot be specified and must be learned. This 

is particularly powerful for developing autonomous systems because the environment and 

the resulting input to the system are complex and difficult to predict, and the autonomous 

system must be able to predict future changes in the environment given past and current 

observations. Key to this is a machine learning system's capability to model the underlying 

environment, which in essence is found by remaining adaptive to changes while given data 

to learn from. 

3. Real-Time Path Planning Algorithms 
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Autonomous driving requires algorithms to safely navigate in dynamic environments. These 

algorithms need to provide robust and efficient solutions in real-time. Real-time path 

planning is crucial for planning movements for autonomous vehicles. Different approaches to 

path planning have been employed based on the requirements of the specific setup in which 

the autonomous vehicle is operating. The real-time path planning algorithms attempt to take 

any collision avoidance constraints in dynamic setups into account when choosing an optimal 

path. 

Dijkstra's algorithm and A* search are popular algorithms used to find the shortest path on a 

graph from the initial state to the final state with a positive path cost. Dijkstra's algorithm 

explores the nodes in a greedy manner utilizing uniform distribution. A* search utilizes a cost 

heuristic along with the known cost to reach any visited node towards the initial node from 

the initial state. Upon discovering a low-cost heuristic node towards the final state, a sequence 

path can be reconstructed. 

Both Dijkstra's algorithm and A* search result in suboptimal trajectories. Dijkstra's algorithm 

discovers nodes that should not have been reached in the first place simply because of the 

accumulated cost over fewer iterations. Furthermore, its performance exponentially increases 

with increasing graph density, which can be the case for a finer grid representation. The main 

strength of Dijkstra's algorithm lies in any uniform cost graph. For an unknown uniform cost 

graph, Dijkstra's algorithm can be used to locate the final node from the initial node. Tagged 

A* search overcomes A* search's weak performance with a replay strategy that applies 

another relaxed least costly found operator to reconstruct the final path. Reinforcement 

learning is also employed to solve the shortest path search. Directed Q-learning learns the 

driving policy regime based on feedback without the knowledge of the real-world dynamics. 

Dijkstra's algorithm discovers nodes that should not have been reached in the first place 

simply because of the accumulated cost over fewer iterations. Dijkstra's algorithm 

performance exponentially increases upon increasing the percentage of cells over the total 

area. Dijkstra's algorithm is especially beneficial whenever unknown graph weights have to 

be imposed across experience. Implementation of graph algorithms in control systems is 

complex and involves recursive and nested loops to update the cost to any reachable state. 

Extremely low planner frequency rates for specific applications that require complex data for 
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real-time operation can be facilitated with a good path-saving technique. Path-saving 

techniques are available in real-time A* algorithms. With Dijkstra's algorithm, totally 

unnecessary iterations could result in computing a coated graph that requires time. Dijkstra's 

algorithm is not seen as data-intensive since it would explore a few states in shallow depth 

before branching. 

3.1. Dijkstra's Algorithm and A* Search 

3.1. Dijkstra's Algorithm and A* Search 

Dijkstra’s algorithm is a pathfinding and graph traversal algorithm that systematically finds 

the shortest path between nodes in a graph. In the context of autonomous driving, nodes are 

interpreted as possible positions of the vehicle at a specific instance of time, whereas edges 

between nodes represent permissible transitions between those positions. Dijkstra’s algorithm 

was employed for path planning within urban driving environments, i.e., those with non-

uniform edge costs, and for lateral path planning within highway environments, i.e., those 

with uniform edge costs. Since time constraints render suboptimal planning algorithms 

desirable for autonomous onboard decision-making, we have employed Dijkstra’s algorithm 

for the generation of short paths. Dijkstra’s algorithm visits nodes in an order determined by 

their shortest-path estimates. It subsequently revises the shortest-path estimates of nodes that 

can be reached from each node. In each step, Dijkstra’s algorithm adds the node with the 

smallest shortest-path estimate to a set of visited nodes. 

A* search is a notable enhancement to Dijkstra’s algorithm that employs an admissible and 

consistent heuristic function to reduce computational complexity. A* search was employed 

within the autonomous vehicle’s decision-making process for longitudinal path planning 

within extended highway environments, i.e., those with on- and off-ramp edge connections. 

Adaptive precision of the heuristic function was used in order to dynamically adjust the 

balance between optimality and computational expense. The heuristic employed was 

informed by a grid map, where path costs consisted of the continuous road segment costs and 

the ramp edge costs. A heuristic function informed by such a map is consistent because it does 

not overestimate the remaining distance through the road. Both Dijkstra’s algorithm and A* 

search exhibit a computational complexity that is exponential in the number of vertices when 

using a priority queue. For large numbers of vertices, this drives complexity to O((V + E) 
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log(V)), where E and V are the number of edges and vertices, respectively. The decision to 

apply the more computationally complex A* search was guided by comparison of the number 

of graph vertices to the computational complexity of both algorithms. 

Dijkstra’s algorithm and A* search are suitable for scenarios in which planning is applied to a 

dense node graph. A substantial portion of the literature has applied these algorithms to road 

navigation. The shortest paths in the below figure were generated via Dijkstra’s algorithm and 

depict urban driving trajectories. The paths evidence the vehicle’s ability to deviate from its 

final destination in search of more optimal edges. However, both algorithms divert the vehicle 

following a specific edge in order to reach a desirable destination location, rather than to 

minimize travel time. Such diversions suggest that the variants of A* search in this context 

may be adapted to minimize driving time with an extension to the cost function. Defects in 

trajectory quality arise via Dijkstra’s algorithm during highway navigation; the algorithm’s 

implementation without the evaluation of lateral position renders short yet undesired lane 

changes. Such defects may be mitigated via an examination of the gap acceptance model. Since 

A* search further reduces on-road computational demand, both variants likely present 

realistic optimization possibilities. 

3.2. Reinforcement Learning for Path Planning 

Reinforcement Learning for Path Planning: Reinforcement learning (RL) has gained 

tremendous interest and reputation in autonomous systems, including autonomous driving 

scenarios, in which a skillful or optimal path has to be facilitated. As one of the most promising 

machine learning paradigms, RL allows an agent to learn to make decisions by interacting 

with an environment. During the learning process, the agent accumulates experiences, named 

samples, where each sample involves the environment presented to the agent, the action 

decided by the agent, the environment feedback as the consequence of the action, the 

computational reward associated with the agent, and the representation of the agent's 

perception at that moment. Among these elements, the environment state, the action to 

determine, and the rewarded return are commonly used to define and formulate an RL 

problem. In the spatial navigation literature, the state refers to the status or geographical 

coordinates of the environment presented to the mobile robot. The action normally stands for 

the change of the vehicle location based on the available environment perception. The reward 
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is anticipated to motivate the agent's learning for making a profitable decision when acting in 

navigation tasks to reach a destination on the map. 

Random exploration leads not only to a higher chance of learning better policies in navigation 

tasks but also to the computational complexity of states. For example, if the agent's state space 

grows exponentially with the complexity of the environment and becomes much larger than 

the length of the training phase, the ability to find an optimal strategy based only on the 

training done is compromised. As a consequence, the concept of temporally varying value 

functions, so-called Q-functions (whose value indicates the utility of specific actions from 

specific states), combined with sample-based update rules forming the base of powerful 

value-based reinforcement learning algorithms, one of which is the nifty class of Q-learning 

meta algorithms, includes neuromodulated Q-learning as a novel member. In particular, Deep 

Q-Networks algorithms, one of the modern versions of Q-learning, integrate the flexibility of 

deep learning with sophisticated meta-updates for enhancing learning efficiency. They have 

attracted the most attention for employing pre-training and then fine-tuning on RL agents 

conveyed sensor data or spatial map data to make them master the highly task-oriented 

navigational policies. Side-by-side performance improvements based on constrained sparsity 

computations together with synaptic weight pruning have been proposed for developing 

state-of-the-art Deep Q-Networks ensembles. The ability to adapt to newly observed, 

exploited, and emphasized spatial zones in navigation scenarios with accurate time-varying 

eligibility traces while minimizing the computational cost of the Q-function ensemble can be 

improved when Deep Q-Networks are modulated by neuromodulation modules. This has 

huge potential relevance for path planning in projects since reinforcement learning, especially 

the latest version, can be trained with simulated data and adjusted to the real world, e.g., 

online self-driving vehicles updated. 

4. Hazard Detection and Object Recognition 

Hazard detection and object recognition are crucial for the safety of autonomous vehicles. The 

traditional approach to detect objects based on image processing found low-level image 

features and used various clustering algorithms for lane detection, often resulting in 

combining several models into one system. The transition from using traditional to more 

contemporary techniques of describing and detecting objects based on a large number of low-
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level features and classifying them into various groups, or simply with the help of deep 

learning methods, has contributed to increased accuracy and reliability in the decision-

making process in autonomous vehicles. In the domains of ADAS, hazard detection is based 

on the extraction of features from the environment, like infrastructure, while obstacle 

detection is used for complex scenarios where sensors could not directly extract data from the 

hazard. 

The detection of surrounding objects has been studied over the past two decades. An apex of 

comprehensive techniques for deep learning-based object detection has been proposed to 

solve detection-related issues. This chapter discusses this evolution with the use of different 

datasets used for training object detection models. This chapter aims to provide an overview 

of the fundamentals from the hazard detection point of view; it also discusses the importance 

of timing in making a decision while driving. Hazard detection systems are usually based on 

sensors such as lidar and radar and are performed at a more global level, assessing a series of 

data points from the environment in order to detect a potential situation that could cause a 

series of threats. Detection efficiency and time are mandatory for the decision-making module 

for autonomously driving systems, as both represent deadlines in which the automated 

software should make the decision. 

4.1. Image Processing Techniques 

4.1. Image Processing Techniques. 

4.1.1. Classical Methods One of the most traditional and early studies regarding object 

detection in image processing is edge detection. It is used to create and represent the objects' 

contours in the images. Among its techniques, the most well-known is the Sobel filter. Later 

on, segmentation, feature extraction, and feature matching were used. These techniques were 

often applied in a sequence. In feature extraction, Canny proposed the use of the combination 

of three other techniques to improve its performance. Its main purpose is to extract edges from 

the original images with lower noise and then build naturally continuous regions or 

boundaries by using gradients. The Canny algorithm applied Sobel for the first derivative 

calculations, with a Gaussian filter to add the effect of noise reduction and a double threshold 

method to find the actual relevant edges that complete the continuous boundaries around 

them. However, this kind of technique has several constraints. Instead of the fuzzy-based 
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technique, it needs a perfect detection to make any decision afterward. The limitations of 

previous methods led researchers to shift their focus to modern deep learning. It is important 

to mention that the versatility is quite limited, and they do not have the ability to adapt 

themselves to certain dynamic changes. Due to a fixed template that is loaded initially, the 

system recognizes and follows the pre-loaded object, regardless of whether it is necessary. In 

a complex driving setting such as a road environment or urban city, every capture could have 

different appearances because of light, environmental conditions, dirty camera lenses, or 

more. Normal use for detecting obstacles is also not always used to detect traffic signs, road 

marks, estimators/distances, and so on. Thus, traditional methods have insignificant 

effectiveness for dynamic reconnaissance in complex driving situations. 

Overall, classical methods work well in structured situations and have broken down in newer, 

more complex variants. Compulsory image pre-processing, to emphasize some features in 

particular, was important in their method. In this scenario, the need for image analysis with 

machine learning is important because it does not require image preprocessing specifically. 

The development of deep learning in computing technology and data handling helped it to 

be applied to various fields, including autonomous driving, and it was able to compete with 

traditional methods. 

4.2. Deep Learning for Object Detection 

Deep learning methods have had a significant impact on advancing the performance of object 

detection. In the context of autonomous driving, deep learning models have inspired 

breakthroughs for visual sensory data, allowing a wide range of visual recognition tasks to be 

improved using image data. Convolutional neural networks (CNNs) have been widely 

adopted in advancing state-of-the-art results due to the development of more sophisticated 

and relatively deeper architectures and learning processes. Deep CNNs can provide a 

considerably higher level of representation for detecting objects from video or image frames. 

The typical process for training a deep learning model uses a supervised learning procedure 

with labels. In object detection, side information in terms of object classes and bounding boxes 

of the training image is provided. Training to minimize errors produced by the model is 

carried out over an epoch after the whole training dataset has been propagated through the 

model once. Deep learning architectures for object detection use the training processes to 
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optimize various layers to understand various scale and translation invariances. Typically, 

such models require much more computational resources for training due to the high 

dimensional range of weights and biases needing to be optimized in the forward and 

backward passes. 

Many modern deep learning models have enhanced pioneering efforts, increasing robustness 

and accuracy for large-scale object detection in RGB images and videos. The You Only Look 

Once algorithm family produced a strong method for real-time object detection with high 

generalization for varying classes and scales of objects. State-of-the-art YOLO versions 

demonstrate detection of objects on par with faster R-CNN methods while being 

computationally more efficient. Faster R-CNN outperforms traditional methods for object 

detection, using region proposal propagation methods in a deep learning network. Faster R-

CNN uses both region proposal networks for recurrent object detection and a Fast R-CNN for 

the full scene. The RPN constraint of anchor boxes is not used in single-shot detection as 

proposed in YOLO. Both YOLO and Faster R-CNN are more effective with the integration of 

neural networks, providing robustness for object detection across different datasets. The 

models are able to detect a wide range of objects in various indoor and outdoor environments 

and can generalize across diverse datasets. Object detection mechanisms have the ability to 

identify hazards from the surrounding environment and provide critical feedback to the 

control loop in order to make the car safely drive autonomously. Deep learning object 

detection and visual recognition models are a vital component of many autonomous driving 

systems. The deep learning models form part of the sensing component of an autonomous 

platform. Moreover, object detection is often used within the data-fusion sensing component, 

combining different precision modalities and sensory data along with the visual scene images. 

5. Collision Avoidance Strategies 

Collision avoidance is the most crucial part of an AV system, as accident avoidance minimizes 

the chance of beliefs accumulated during highway driving. At an average of 183 meters per 

second, nonetheless, choices have to be made rapidly. In general, collision avoidance can be 

handled as prediction and prevention. Often, vehicles infer the behavior of other road users, 

which seems singularly true for human drivers who stay focused on sensorimotor activities. 

Preventing future collisions is done through reactive and proactive methods that have 
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different operational frameworks. Finally, perception is configured to detect probable 

obstacles, people, and other objects and events. Sensor data is weakly described by the subject; 

accidents are not categorized as probable events but are treated as improbable, mostly due to 

a lack of information. 

Sensor data, as well as driving history, are utilized by traffic forecasting to generate a variety 

of potential paths. In a similar fashion, other inter-vehicle interaction types are anticipated for 

next-generation vehicles. Information is not only gathered from a range of origins and filtered 

to acquire reliable messages, but it is often combined from several sources to attain situational 

awareness. For decision-making purposes, sensor information is translated into required 

steps. There are many techniques to resolve this challenge of fusing data from multiple 

sensors. When it comes to the accident avoidance system, the choice created by the 

complementary algorithm has priority only if operational planning would seem to be 

dangerous. Achievable travel pathways are generated by the potential threat levels delivered 

in the execution system. In a variety of investigations, the significance of sensor fusion 

strategies was seen when the objective was estimating any parameter. 

5.1. Sensor Fusion Techniques 

One of the significant elements that lead to the advancement of perception in autonomous 

vehicles is sensor fusion techniques. Deliberately integrating the information extracted from 

a set of various sensors, such as cameras, LiDAR, radar, etc., ensures the minimization of their 

respective weaknesses, thus combining their strengths. Cameras are definitely one of the most 

popular sensors for fundamental image processing and segmentation purposes. LiDAR is 

accurate in delivering profound information regarding structure and depth sensing in the 

surroundings of the vehicle. Nevertheless, cameras can be severely affected by low-visibility 

conditions, for instance, heavy rain, fog, or extreme lighting settings. LiDAR also depends on 

light reflection, so it may find it difficult to detect thin or transparent obstacles. Fortunately, 

in such cases, radar proficiently senses both solid and liquid objects. The most complementary 

sensors are the combinations of LiDAR with cameras and LiDAR with radars. This approach 

is anticipated to deliver more organized and precise information in extracting vehicle 

surroundings and participant detection. 
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The potential strengths and weaknesses of sensors considered in autonomous vehicles reveal 

why the need for different types of sensors is inevitable and why their accurate fusion in the 

perception and environment module is crucial. A few of the highlighted challenges in multi-

sensor data fusion for perception in autonomous vehicles entail the difficulty of synchronizing 

different sensors, the inconsistency of data recordings from different sensor systems, formats, 

and resolutions, and the inability to fuse the enormous amount of input data in real-time. Data 

inconsistency may comprise different resolutions, distances, and percentages of coverage, e.g., 

when LiDAR mainly covers the road environment and radar covers the objects behind the 

vehicle. In this context, choosing a combination of several sensors is worthwhile to avoid data 

inconsistency and diversified demands among applications of autonomous vehicles for real-

time decision-making. Algorithms commonly employed in the fusion module include Kalman 

filtering, Bayesian networks, and Monte Carlo methods. The efficient fusion of the 

information from different sensors used in perception is a vital task, thereby dictating the 

output of the decision-making process and collision avoidance mode. Recent developments 

in machine learning strategies are entailed, showing enhancements in LiDAR, radar, and 

camera information. 

5.2. Decision-Making Algorithms 

Designing a decision-making algorithm is very important because it enables the vehicle to 

properly drive and interact safely with its surrounding traffic and environment. Several 

decision-making algorithms have been proposed, each designed to interpret sensor 

information, make decisions according to traffic rules, generate safe trajectories, and optimize 

driving motives regarding some objective functions. Usually, one of the primary concerns for 

driving decision-making algorithms is safety; however, other components such as comfort 

and efficiency of the driving decisions must also be considered and balanced through the 

decision-making process. Additionally, the driving decision-making algorithms should also 

be able to blend information from different sources and handle uncertainties in the 

environment. In highways, the decision-making algorithm must be able to plan long-term 

routes and adapt them according to the traffic conditions, whereas in urban scenarios, short-

term decisions are typically enough to properly navigate the streets. 
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The scope of the decision-making algorithms should be adaptable or flexible enough to 

optimally make decisions according to each situation scenario. Integration with other parts of 

the AD system is important to validate the driving decision-making subsystem and evaluate 

their performance. Machine learning algorithms have become more popular in the decision-

making system of self-driving cars in order to endow the decision-making algorithm with 

more flexibility and adaptability that can handle complex urban environments. Decision-

making models using machine learning techniques are agile in handling complex multi-agent 

movements and complicated dynamic environments. However, machine learning algorithms 

inherently suffer from the problem of how to generalize easily to unknown conditions or how 

to handle non-generalized situations, which are inadequacies for real-world applications 

involving driving tasks. The machine learning-based models cannot guarantee the 

performance of deep neural networks and uncertainties in properties. 

6. Challenges and Future Directions in Autonomous Driving 

The development of autonomous vehicles is a complex task, the success of which depends on 

several issues. Apart from the technical difficulties associated with processing a vast amount 

of data in real time, largely affected by the environmental non-deterministic variability, one 

of the greatest problems is related to safety issues. The reliability of the autonomous vehicle 

system is not only related to the car's behavior itself but also to the decisions that the car makes 

under given critical conditions. In this regard, ethical considerations become essential in the 

development of the decision-making algorithm that works in case of a critical event: 

identifying the methodology adopted by the entity that has to devise the car's behavior in a 

given situation becomes a mandatory task. Collaboration between the industries is the way to 

implement guidelines for these kinds of decision-making algorithms. The development of 

autonomous driving can be seen as a binding task between technical and legal dimensions, 

where the vehicular industries have to interact with the legal sphere to deal with the necessity 

of guidelines and fences delimitation for the technical issue resolution. It is necessary for 

driving and fleet decision-making algorithms to comply with behavioral models intended for 

human drivers in relation to vehicular or pedestrian behavior. An in-depth analysis of this 

interdisciplinary cooperation is the objective of the Spillover section, which is currently in an 

acceptance phase. 
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Despite the considerable technological advances that occurred in the last years, there are 

myriad challenges that have to be tackled before mass deployment of autonomous vehicles 

can be achieved. Research on developing new approaches that can potentially tackle all these 

challenges must be fostered, trying to investigate the limit situations of the technologies 

available today. AI can and must be heavily involved in this effort. This effort to improve the 

new technologies available through artificial intelligence systems must be based on the testing 

of various databases, considering possible irregularities in these. Simulation can help in many 

aspects, but only a real-life database can be used to evaluate the active learning and 

generalization of an algorithm or the effective communication of autonomous vehicles with 

other controllers, as well as other systems available today. The development of increasingly 

advanced communication algorithms must be another direction for research and 

development. In addition to current and active radar sensors, LIDAR, and cameras installed 

in vehicles, the communication of these vehicles with infrastructure sensors or sub-networks 

or a cooperative sensor-based environment is a great advantage. 

7. Conclusion 

The aim of this chapter was to comprehensively survey autonomous driving decision-making 

and the recent advancements. In particular, we are excited about machine learning-based 

techniques because of their capability to unlock solutions to problems where traditional 

methods have failed. We surveyed many state-of-the-art decision-making techniques focusing 

on different aspects, the most important of which are real-time path planning, hazard 

detection, and decision-making algorithms. It seems that autonomous driving has a really 

bright future. However, there are still many challenges to overcome. On the technical level, 

sensor technologies and machine learning are still not perfect, and therefore many crashes still 

occur. In addition, there are always going to be ethical questions concerning the decision-

making of autonomous vehicles; these decisions should be aligned with the safest possible 

approach. Clearly, a lot of research and progress still needs to be made. More research is 

needed in all these aspects. As of now, the field is very young and generally fragmented, and 

there are no standards and benchmarks. It goes without saying that autonomous vehicles will 

certainly be safer if their surroundings are also inhabited by autonomous vehicles. For that to 

happen, the convoy of companies must work together harmoniously; otherwise, it’s 

impossible. 
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