Vol. 4 No. 2 (2024): African Journal of Artificial Intelligence and Sustainable Development
Articles

Deep Learning-based Drug Target Identification for Precision Medicine: Utilizing deep learning approaches for drug target identification in precision medicine, facilitating the development of targeted therapies tailored to individual patient characteristi

Dr. Benoît Dupont
Associate Professor of Healthcare Management, Université de Montréal, Canada

Published 08-09-2024

Keywords

  • Deep learning,
  • disease subtypes

How to Cite

[1]
Dr. Benoît Dupont, “Deep Learning-based Drug Target Identification for Precision Medicine: Utilizing deep learning approaches for drug target identification in precision medicine, facilitating the development of targeted therapies tailored to individual patient characteristi”, African J. of Artificial Int. and Sust. Dev., vol. 4, no. 2, pp. 1–9, Sep. 2024, Accessed: Dec. 22, 2024. [Online]. Available: https://africansciencegroup.com/index.php/AJAISD/article/view/133

Abstract

Precision medicine aims to tailor medical treatment to individual characteristics of each patient, considering factors such as genetic makeup, environment, and lifestyle. Deep learning has emerged as a powerful tool in drug discovery and development, offering novel approaches for identifying drug targets with high precision and efficiency. This paper reviews the application of deep learning in drug target identification for precision medicine, highlighting its potential to revolutionize therapeutic strategies by enabling the development of targeted therapies for diverse diseases. We discuss the challenges and opportunities in this field and propose future research directions to enhance the effectiveness and applicability of deep learning in precision medicine.

Downloads

Download data is not yet available.

References

  1. Saeed, A., Zahoor, A., Husnain, A., & Gondal, R. M. (2024). Enhancing E-commerce furniture shopping with AR and AI-driven 3D modeling. International Journal of Science and Research Archive, 12(2), 040-046.
  2. Shahane, Vishal. "A Comprehensive Decision Framework for Modern IT Infrastructure: Integrating Virtualization, Containerization, and Serverless Computing to Optimize Resource Utilization and Performance." Australian Journal of Machine Learning Research & Applications 3.1 (2023): 53-75.
  3. Biswas, Anjanava, and Wrick Talukdar. "Guardrails for trust, safety, and ethical development and deployment of Large Language Models (LLM)." Journal of Science & Technology 4.6 (2023): 55-82.
  4. N. Pushadapu, “Machine Learning Models for Identifying Patterns in Radiology Imaging: AI-Driven Techniques and Real-World Applications”, Journal of Bioinformatics and Artificial Intelligence, vol. 4, no. 1, pp. 152–203, Apr. 2024
  5. Talukdar, Wrick, and Anjanava Biswas. "Improving Large Language Model (LLM) fidelity through context-aware grounding: A systematic approach to reliability and veracity." arXiv preprint arXiv:2408.04023 (2024).
  6. Chen, Jan-Jo, Ali Husnain, and Wei-Wei Cheng. "Exploring the Trade-Off Between Performance and Cost in Facial Recognition: Deep Learning Versus Traditional Computer Vision." Proceedings of SAI Intelligent Systems Conference. Cham: Springer Nature Switzerland, 2023.
  7. Alomari, Ghaith, et al. “AI-Driven Integrated Hardware and Software Solution for EEG-Based Detection of Depression and Anxiety.” International Journal for Multidisciplinary Research, vol. 6, no. 3, May 2024, pp. 1–24.
  8. Choi, J. E., Qiao, Y., Kryczek, I., Yu, J., Gurkan, J., Bao, Y., ... & Chinnaiyan, A. M. (2024). PIKfyve, expressed by CD11c-positive cells, controls tumor immunity. Nature Communications, 15(1), 5487.
  9. Borker, P., Bao, Y., Qiao, Y., Chinnaiyan, A., Choi, J. E., Zhang, Y., ... & Zou, W. (2024). Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Cancer Research, 84(6_Supplement), 7479-7479.
  10. Gondal, Mahnoor Naseer, and Safee Ullah Chaudhary. "Navigating multi-scale cancer systems biology towards model-driven clinical oncology and its applications in personalized therapeutics." Frontiers in Oncology 11 (2021): 712505.
  11. Saeed, Ayesha, et al. "A Comparative Study of Cat Swarm Algorithm for Graph Coloring Problem: Convergence Analysis and Performance Evaluation." International Journal of Innovative Research in Computer Science & Technology 12.4 (2024): 1-9.
  12. Pelluru, Karthik. "Enhancing Cyber Security: Strategies, Challenges, and Future Directions." Journal of Engineering and Technology 1.2 (2019): 1-11.
  13. Mustyala, Anirudh, and Sumanth Tatineni. "Cost Optimization Strategies for Kubernetes Deployments in Cloud Environments." ESP Journal of Engineering and Technology Advancements 1.1 (2021): 34-46.