Vol. 4 No. 2 (2024): African Journal of Artificial Intelligence and Sustainable Development
Articles

Adversarial Machine Learning in Cybersecurity: Threats, Mitigation, and Real-World Applications

Michael A. Turner
PhD, Department of Computer Science, University of Toronto, Toronto, Canada

Published 27-09-2024

Keywords

  • adversarial machine learning,
  • cybersecurity

How to Cite

[1]
M. A. Turner, “Adversarial Machine Learning in Cybersecurity: Threats, Mitigation, and Real-World Applications”, African J. of Artificial Int. and Sust. Dev., vol. 4, no. 2, pp. 69–76, Sep. 2024, Accessed: Nov. 06, 2024. [Online]. Available: https://africansciencegroup.com/index.php/AJAISD/article/view/174

Abstract

Adversarial machine learning (AML) represents a critical threat to cybersecurity systems that rely on artificial intelligence (AI) for intrusion detection, malware classification, and other tasks. This paper provides a comprehensive analysis of AML in the context of cybersecurity, exploring how malicious actors exploit machine learning (ML) vulnerabilities to compromise security systems. The growing sophistication of adversarial attacks threatens the reliability of AI models in real-world cybersecurity applications. This research also delves into mitigation strategies, including adversarial training, robust optimization, and secure data processing techniques. It explores the strengths and limitations of these techniques in real-world environments. Case studies illustrate the potential of AML attacks in disrupting AI-driven cybersecurity measures, and the paper concludes with future research directions aimed at securing ML systems from adversarial threats.

Downloads

Download data is not yet available.

References

  1. Vangoor, Vinay Kumar Reddy, et al. "Zero Trust Architecture: Implementing Microsegmentation in Enterprise Networks." Journal of Artificial Intelligence Research and Applications 4.1 (2024): 512-538.
  2. Gayam, Swaroop Reddy. "Artificial Intelligence in E-Commerce: Advanced Techniques for Personalized Recommendations, Customer Segmentation, and Dynamic Pricing." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 105-150.
  3. Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Predictive Maintenance of Banking IT Infrastructure: Advanced Techniques, Applications, and Real-World Case Studies." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 86-122.
  4. Putha, Sudharshan. "AI-Driven Predictive Analytics for Maintenance and Reliability Engineering in Manufacturing." Journal of AI in Healthcare and Medicine 2.1 (2022): 383-417.
  5. Sahu, Mohit Kumar. "Machine Learning for Personalized Marketing and Customer Engagement in Retail: Techniques, Models, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 219-254.
  6. Kasaraneni, Bhavani Prasad. "AI-Driven Policy Administration in Life Insurance: Enhancing Efficiency, Accuracy, and Customer Experience." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 407-458.
  7. Kondapaka, Krishna Kanth. "AI-Driven Demand Sensing and Response Strategies in Retail Supply Chains: Advanced Models, Techniques, and Real-World Applications." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 459-487.
  8. Kasaraneni, Ramana Kumar. "AI-Enhanced Process Optimization in Manufacturing: Leveraging Data Analytics for Continuous Improvement." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 488-530.
  9. Pattyam, Sandeep Pushyamitra. "AI-Enhanced Natural Language Processing: Techniques for Automated Text Analysis, Sentiment Detection, and Conversational Agents." Journal of Artificial Intelligence Research and Applications 1.1 (2021): 371-406.
  10. Kuna, Siva Sarana. "The Role of Natural Language Processing in Enhancing Insurance Document Processing." Journal of Bioinformatics and Artificial Intelligence 3.1 (2023): 289-335.
  11. George, Jabin Geevarghese, et al. "AI-Driven Sentiment Analysis for Enhanced Predictive Maintenance and Customer Insights in Enterprise Systems." Nanotechnology Perceptions (2024): 1018-1034.
  12. P. Katari, V. Rama Raju Alluri, A. K. P. Venkata, L. Gudala, and S. Ganesh Reddy, “Quantum-Resistant Cryptography: Practical Implementations for Post-Quantum Security”, Asian J. Multi. Res. Rev., vol. 1, no. 2, pp. 283–307, Dec. 2020
  13. Karunakaran, Arun Rasika. "Maximizing Efficiency: Leveraging AI for Macro Space Optimization in Various Grocery Retail Formats." Journal of AI-Assisted Scientific Discovery 2.2 (2022): 151-188.
  14. Sengottaiyan, Krishnamoorthy, and Manojdeep Singh Jasrotia. "Relocation of Manufacturing Lines-A Structured Approach for Success." International Journal of Science and Research (IJSR) 13.6 (2024): 1176-1181.
  15. Paul, Debasish, Gunaseelan Namperumal, and Yeswanth Surampudi. "Optimizing LLM Training for Financial Services: Best Practices for Model Accuracy, Risk Management, and Compliance in AI-Powered Financial Applications." Journal of Artificial Intelligence Research and Applications 3.2 (2023): 550-588.
  16. Namperumal, Gunaseelan, Akila Selvaraj, and Yeswanth Surampudi. "Synthetic Data Generation for Credit Scoring Models: Leveraging AI and Machine Learning to Improve Predictive Accuracy and Reduce Bias in Financial Services." Journal of Artificial Intelligence Research 2.1 (2022): 168-204.
  17. Soundarapandiyan, Rajalakshmi, Praveen Sivathapandi, and Yeswanth Surampudi. "Enhancing Algorithmic Trading Strategies with Synthetic Market Data: AI/ML Approaches for Simulating High-Frequency Trading Environments." Journal of Artificial Intelligence Research and Applications 2.1 (2022): 333-373.
  18. Pradeep Manivannan, Amsa Selvaraj, and Jim Todd Sunder Singh. “Strategic Development of Innovative MarTech Roadmaps for Enhanced System Capabilities and Dependency Reduction”. Journal of Science & Technology, vol. 3, no. 3, May 2022, pp. 243-85
  19. Yellepeddi, Sai Manoj, et al. "Federated Learning for Collaborative Threat Intelligence Sharing: A Practical Approach." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 146-167.
  20. Rout, Litu, et al. "RB-Modulation: Training-Free Personalization of Diffusion Models using Stochastic Optimal Control." arXiv preprint arXiv:2405.17401 (2024).
  21. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016.
  22. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.