Published 14-05-2023
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
How to Cite
Abstract
Autonomous vehicles have garnered increasing attention due to advancements in deep learning algorithms [1]. Vision-based driving assistance often uses computational architectures like recurrent neural networks due to the low cost of cameras. However, self-driving car systems requiring the low-latency operation benefit from well-optimized software and hardware stacks. Further, the training process of deep learning models is computationally expensive, often taking days, or even weeks, to finish [2]. Deep learning is setting new benchmarks in various fields almost daily.
Downloads
References
- Tatineni, Sumanth, and Venkat Raviteja Boppana. "AI-Powered DevOps and MLOps Frameworks: Enhancing Collaboration, Automation, and Scalability in Machine Learning Pipelines." Journal of Artificial Intelligence Research and Applications 1.2 (2021): 58-88.
- Ponnusamy, Sivakumar, and Dinesh Eswararaj. "Navigating the Modernization of Legacy Applications and Data: Effective Strategies and Best Practices." Asian Journal of Research in Computer Science 16.4 (2023): 239-256.
- Shahane, Vishal. "Security Considerations and Risk Mitigation Strategies in Multi-Tenant Serverless Computing Environments." Internet of Things and Edge Computing Journal 1.2 (2021): 11-28.
- Machireddy, Jeshwanth Reddy. "Assessing the Impact of Medicare Broker Commissions on Enrollment Trends and Consumer Costs: A Data-Driven Analysis." Journal of AI in Healthcare and Medicine 2.1 (2022): 501-518.
- Tomar, Manish, and Vathsala Periyasamy. "Leveraging advanced analytics for reference data analysis in finance." Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 2.1 (2023): 128-136.
- Abouelyazid, Mahmoud, and Chen Xiang. "Machine Learning-Assisted Approach for Fetal Health Status Prediction using Cardiotocogram Data." International Journal of Applied Health Care Analytics 6.4 (2021): 1-22.
- Prabhod, Kummaragunta Joel. "Utilizing Foundation Models and Reinforcement Learning for Intelligent Robotics: Enhancing Autonomous Task Performance in Dynamic Environments." Journal of Artificial Intelligence Research 2.2 (2022): 1-20.
- Tatineni, Sumanth, and Anirudh Mustyala. "AI-Powered Automation in DevOps for Intelligent Release Management: Techniques for Reducing Deployment Failures and Improving Software Quality." Advances in Deep Learning Techniques 1.1 (2021): 74-110.