Vol. 4 No. 2 (2024): African Journal of Artificial Intelligence and Sustainable Development
Articles

Decentralized Machine Learning on Blockchain: A Framework for Collaborative AI Model Training

Dr. Laura Martinez
Senior Researcher, Department of Computer Science, University of Toronto, Canada

Published 03-10-2024

Keywords

  • Decentralized Machine Learning,
  • Blockchain

How to Cite

[1]
D. L. Martinez, “Decentralized Machine Learning on Blockchain: A Framework for Collaborative AI Model Training”, African J. of Artificial Int. and Sust. Dev., vol. 4, no. 2, pp. 92–98, Oct. 2024, Accessed: Nov. 06, 2024. [Online]. Available: https://africansciencegroup.com/index.php/AJAISD/article/view/177

Abstract

The integration of decentralized machine learning and blockchain technology presents a transformative approach to collaborative artificial intelligence (AI) model training. This paper proposes a framework that leverages blockchain's inherent features—transparency, data integrity, and fairness—to enhance the collaborative training of AI models across various stakeholders. In traditional centralized models, data privacy, trust issues, and potential biases often hinder collaboration and the quality of AI outputs. In contrast, a decentralized framework enables multiple parties to contribute to AI model training without the need for data sharing, maintaining privacy while ensuring that contributions are verifiable and auditable. This research highlights the technical architecture of the proposed framework, evaluates its potential benefits, and discusses challenges such as scalability, governance, and regulatory considerations. The findings demonstrate that a blockchain-based decentralized machine learning framework can significantly improve collaborative AI model training and foster innovation across industries.

Downloads

Download data is not yet available.

References

  1. Gayam, Swaroop Reddy. "Deep Learning for Autonomous Driving: Techniques for Object Detection, Path Planning, and Safety Assurance in Self-Driving Cars." Journal of AI in Healthcare and Medicine 2.1 (2022): 170-200.
  2. Chitta, Subrahmanyasarma, et al. "Decentralized Finance (DeFi): A Comprehensive Study of Protocols and Applications." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 124-145.
  3. Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Real-Time Logistics and Transportation Optimization in Retail Supply Chains: Techniques, Models, and Applications." Journal of Machine Learning for Healthcare Decision Support 1.1 (2021): 88-126.
  4. Putha, Sudharshan. "AI-Driven Predictive Analytics for Supply Chain Optimization in the Automotive Industry." Journal of Science & Technology 3.1 (2022): 39-80.
  5. Sahu, Mohit Kumar. "Advanced AI Techniques for Optimizing Inventory Management and Demand Forecasting in Retail Supply Chains." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 190-224.
  6. Kasaraneni, Bhavani Prasad. "AI-Driven Solutions for Enhancing Customer Engagement in Auto Insurance: Techniques, Models, and Best Practices." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 344-376.
  7. Vangoor, Vinay Kumar Reddy, et al. "Energy-Efficient Consensus Mechanisms for Sustainable Blockchain Networks." Journal of Science & Technology 1.1 (2020): 488-510.
  8. Kondapaka, Krishna Kanth. "AI-Driven Inventory Optimization in Retail Supply Chains: Advanced Models, Techniques, and Real-World Applications." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 377-409.
  9. Kasaraneni, Ramana Kumar. "AI-Enhanced Supply Chain Collaboration Platforms for Retail: Improving Coordination and Reducing Costs." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 410-450.
  10. Pattyam, Sandeep Pushyamitra. "Artificial Intelligence for Healthcare Diagnostics: Techniques for Disease Prediction, Personalized Treatment, and Patient Monitoring." Journal of Bioinformatics and Artificial Intelligence 1.1 (2021): 309-343.
  11. Kuna, Siva Sarana. "Utilizing Machine Learning for Dynamic Pricing Models in Insurance." Journal of Machine Learning in Pharmaceutical Research 4.1 (2024): 186-232.
  12. George, Jabin Geevarghese. "Augmenting Enterprise Systems and Financial Processes for transforming Architecture for a Major Genomics Industry Leader." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 242-285.
  13. Katari, Pranadeep, et al. "Cross-Chain Asset Transfer: Implementing Atomic Swaps for Blockchain Interoperability." Distributed Learning and Broad Applications in Scientific Research 5 (2019): 102-123.
  14. Sengottaiyan, Krishnamoorthy, and Manojdeep Singh Jasrotia. "SLP (Systematic Layout Planning) for Enhanced Plant Layout Efficiency." International Journal of Science and Research (IJSR) 13.6 (2024): 820-827.
  15. Venkata, Ashok Kumar Pamidi, et al. "Implementing Privacy-Preserving Blockchain Transactions using Zero-Knowledge Proofs." Blockchain Technology and Distributed Systems 3.1 (2023): 21-42.
  16. Namperumal, Gunaseelan, Debasish Paul, and Rajalakshmi Soundarapandiyan. "Deploying LLMs for Insurance Underwriting and Claims Processing: A Comprehensive Guide to Training, Model Validation, and Regulatory Compliance." Australian Journal of Machine Learning Research & Applications 4.1 (2024): 226-263.
  17. Yellepeddi, Sai Manoj, et al. "Blockchain Interoperability: Bridging Different Distributed Ledger Technologies." Blockchain Technology and Distributed Systems 2.1 (2022): 108-129.